
Journal of Mathematical Chemistry Vol. 33, Nos. 3–4, May 2003 (© 2003)

Graphical models of characters of groups
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A graphical method of generating one- and (some) two-dimensional characters (�)
has been developed on the basis of a reduced homomer set, which has been derived from
a new concept of negative graphs. Thus, a homomer set H[G(/Gi )] = {h1, . . . , hd−1, hd }
(d = |G|/|Gi |) has been generated from a regular body of G so that it has been governed by
the coset representation G(/Gi ). The homomer set has been reduced into a reduced homomer
set H′[�] = {h1, . . . , hd−1}, where we have placed hd ≡ −(h1 + · · · + hd−1) in terms of
negative graphs. The action of the symmetry operations of G on the reduced homomer set
H′[�] has graphically generated a one- or (some) two-dimensional character (�). The versa-
tility of the graphical method has been tested by using C3v , D2h, C2h, C2v ,D3h, and C3h as
examples. The graphical method has been compared with an alternative algebraic generation
using marks (or markaracters), i.e., � = G(/Gi )−G(/G).

1. Introduction

There are two disciplines of chemical group theory. The first discipline is based
on permutation groups and permutation representations. Because of its discrete nature,
it has found its applications in chemical combinatorics [1–5], especially in isomer enu-
merations, as summarized in excellent reviews [6–8] and books [9–11]. The second
discipline is based on point groups and linear representations and has been applied to
other chemical fields that treat problems of continuous nature, e.g., quantum chemistry
[12], molecular spectroscopy [13], and related fields [14]. Many textbooks detail the
concepts [15–21].

The two disciplines, however, have common features at the traditional stage de-
scribed in the preceding paragraph1, as we have recently discussed in [22]: namely,
both of them are based on conjugacy classes in discussing invariants of a group. The
first discipline, e.g., Pólya’s theorem, emphasizes cycle indices, each term of which is
ascribed to a conjugacy class, as discussed for clarifying the nature of chemical com-
binatorics [23]. As known widely, the second discipline uses linear representations,
irreducible representations and characters for point groups, which stem from conjugacy
classes.

1 Methods based on conjugacy classes are here called “the traditional stage”. On the other hand, methods
characterized by conjugate subgroups are referred to as “the present stage”.
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The common features have been more clearly demonstrated now that the Pólya’s
theorem has been shown to stem from permutation representations, dominant represen-
tations and dominant markaracters (mark-character) [24,25]. Thus, characters for the
second discipline have been shown to correspond to markaracters of the first discipline
[26–29]. Because such markaracters have been defined as marks for cyclic subgroups
[30], various group-theoretical tools developed for the present stage of the first disci-
pline [31] have become applicable to the problems that has been usually ascribed to the
second discipline2.

As a continuation of our study on the graphical method of generating marks for
the first discipline, this work is devoted to present a graphical (almost nonmathematical)
method for generating characters for the second discipline, where one-dimensional char-
acters of chemically important groups are graphically evaluated as Q-conjugacy charac-
ters. Then, the two methods are compared with each other by considering the rela-
tionship between markaracters (marks for cyclic subgroups) for the first discipline and
Q-conjugacy characters for the second discipline. The concepts of “negative graphs”
and “reduced homomer sets” are proposed as key concepts to comprehend the relation-
ship between the two desciplines graphically. The approaches can be applied to cases
which contain imaginary units.

2. Algebraic approach of characters from marks

2.1. Marks and markaracters

Marks have been earlier proposed by Burnside [33] but have remained less familiar
to mathematicians and chemists compared to characters, probably because the calcula-
tion of the mark table of a given group requires the full information of the subgroup
lattice. Thus, the current trends (in mathematics as well as in chemistry) have selected
approaches which do not necessitate first knowing such a full subgroup lattice. This ex-
plains why characters and linear representations have been more widely used than marks
and coset representations. However, chemists interested in stereochemistry should ex-
amine the symmetries of derivatives based on a molecular skeleton belonging to a given
group. It follows that they have to know the corresponding full subgroup lattice in order
to discuss the group–subgroup relationships of the derivatives. This situation has caused
the revival of interest in marks, as summarized in several books [31,34].

Fujita has demonstrated that a row of marks can be regarded as a sum of irreducible
characters, which are capable of constructing symmetry adapted functions [35]. Fujita
has called such sums markaracters(mark-characters) by taking account of the columns
(and sometimes the rows) corresponding to cyclic subgroups only and has further devel-
oped an algebraic procedure to discuss marks and characters on a common basis [24].

2 In an alternative approach, marks have been referred to as supercharactersand markaracters have been
characterized as transitive permutation characters [32, pp. 134, 135].
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Table 1
Mark table of C3v .

←
C1 Cs C3 C3v

C3v(/C1) 6 0 0 0
C3v(/Cs ) 3 1 0 0

↑ C3v(/C3) 2 0 2 0

C3v(/C3v) 1 1 1 1

Table 2
Markaracter table of C3v .

C1 Cs C3 (Q-conjugacy)
I 3σv 2C3 character

C3v(/C1) 6 0 0 A1 + A2 + 2E
C3v(/Cs ) 3 1 0 A1 + E
C3v(/C3) 2 0 2 A1 + A2

C3v(/C3v) 1 1 1 A1

Table 3
(Q-conjugacy) character table of C3v.

I 3σv 2C3 Markaracter
C1 Cs C3

A1 1 1 1 C3v(/C3v)

A2 1 −1 1 C3v(/C3)− C3v(/C3v)

E 2 0 −1 C3v(/Cs )− C3v(/C3v)

In this subsection, the algebraic procedure is first outlined by examining simple exam-
ples in order that the present graphical procedure is compared with the algebraic one by
using the same example.

Let us consider the mark table of C3v shown in table 1. When we take the columns
corresponding to cyclic subgroups only, we obtain a markaracter table shown in table 2.
Although the mark rows for the cyclic subgroups are sufficient to describe the remaining
mark rows, we leave the row of C3v(/C3v) for convenience3.

The resulting markaracter table can be resolved into a sum of irreducible charac-
ters, as found in the last column of table 2. The symbols in the column are notations of
irreducible representations in the corresponding table of characters (table 3)4.

3 For a general approach, we should consider modified mark tablesin place of mark tables [24], since
markaracter tables are derived from such modified mark tables. Although the two types of mark tables for
C3v are identical with each other, they are different in general cases.

4 Strictly speaking, such a character table should be a Q-conjugacy character table in order to cover the cases
of cyclic groups or others that contain characters of imaginary units. Note that a Q-conjugacy relationship
has been defined on the basis of the conjugation of two or more subgroups, while a (usual) conjugacy
relationship has been defined in terms of the conjugation of two or more elements of a group. See [26,37].
For the sake of simplicity, we mainly take account of the cases that do not contain characters of imaginary



258 S. Fujita, S. El-Basil / Graphical models of characters of groups

2.2. Characters via markaracters

Let us now consider how the character table (table 3) is resolved in terms of the
markaracter table (table 3). This resolution can be easily carried out to give the last
column of table 3 [24]5. It should be emphasized that rows of markaracters can be
added and/or subtracted[24], whereas rows of marks can undergo addition only[31]6.

The result of the C3v(/C3) row of table 2,

C3v(/C3) = A1 + A2, (1)

and the result of the A2 row of table 3,

A2 = C3v(/C3)− C3v(/C3v), (2)

can be considered to describe the same thing from two distinct viewpoints, when
the totally symmetric irreducible character A1 = (1, 1, 1) is equalized to the mark
C3v(/C3v)

7. In other words, we are able to discuss characters as markaracters(the right-
hand side of equation (1)) and marks as markaracters (the right-hand side of equation (2))
on a common basis [24].

In general, a coset representation G(/Gmax
i ) with |G|/|Gmax

i | = 2 gives the corre-
sponding mark row (MR), the elements of which are 0 or 2. Hence, the row calculated
by the expression G(/Gmax

i ) − G(/G) (e.g., equation (2)) produces a one-dimensional
irreducible character which is denoted as �±1, where the subscript (±1) indicates the
fact that 1-dimensional irreducible representations (other than the totally symmetry irre-
ducible character) are composed of plus and minus ones only. This fact is summarized
symbolically as follows:

�±1 = G(/Gmax
i )−G(/G), (3)

where Gmax
i is a maximum subgroup of G and |G|/|Gmax

i | = 2; namely, there is no
subgroups between G and Gmax

i
8.

Since marks of a group can be algebraically calculated by means of coset repre-
sentations [31], equation (3) indicates that such one-dimensional characters (�±1) can
be calculated algebraically. Hence, the procedure is described as a purely algebraic

units. In other words, we mainly consider maturedcases [28] in this paper, where Q-conjugacy character
tables are identical with usual character tables.

5 A given coset representation (CR) G(/Gi ) and the corresponding mark (and sometimes markaracter) are
denoted by the same notation, if confusion does not occur.

6 The expressions in the markaracter column of table 3 contain the subtractions of markaracters. If we
remain within the concept of marks, such subtractions cannot be defined for the marks of non-cyclic
subgroups. Thus the statement “rows of marks can undergo addition only” means that minus values are
not permitted if such subtraction of rows of marks was carried out. See [24,30].

7 Stricktly speaking, the right-hand side of equation (1) is concerned with dominant (irreducible)
Q-conjugacy characters, but not with irreducible characters. On a similar line, equation (2) is concerned
with markaracters, but not with marks. However, we sometimes use the words “character” and “mark”,
so long as such usage does not cause confusion.

8 Strictly speaking, the right-hand side of equation (3) is concerned with markaracters, not with marks. The
left-hand side is concerned with a Q-conjugacy character, not with a (usual) character.
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Figure 1. A regular body for C3v-group. The three reflection planes are denoted by the symbols σv , σ ′v ,
and σ ′′v . The three-fold axis, which is perpendicular to the page plane and runs through the center of the

regular body, is the intersection line of the three reflection planes.

approach. For further examples, characters as markaracters have been discussed alge-
braically to give the following equations for characterizing T d group [24]:

T d(/T )− T d(/T d)= (2, 2, 0, 2, 0) − (1, 1, 1, 1, 1) = (1, 1,−1, 1,−1) = A2, (4)

T d(/D2d)− T d(/T d)= (3, 3, 1, 0, 1) − (1, 1, 1, 1, 1) = (2, 2, 0,−1, 0) = E, (5)

T d(/D3v)− T d(/T d)= (4, 0, 2, 1, 0) − (1, 1, 1, 1, 1) = (3,−1, 1, 0,−1) = T2. (6)

The first equation of this set is an example of the general expression (equation (3)).
Fujita has clarified a more fundamental relationship between marks (or strictly speak-
ing, markaracters) and characters (or strictly speaking, Q-conjugacy characters) for
cyclic groups by ascribing it to the relationship between Möbius’ functions and Euler’s
ones [30]. Moreover, such relationships as equation (2) have been further subduced into
subgroups so that Fujita has obtained characteristic monomials (CMs) [36]. For exam-
ple, the CM s−1

1 s2 is obtained from equation (2), because the powers are the coefficients
of the respective terms on the right-hand side and the subscripts are calculated to be
|C3v|/|C3| = 6/3 = 2 and |C3v|/|C3v| = 6/6 = 1. Note that the power of the term s1
of each CM is identical with the corresponding character (strictly speaking Q-conjugacy
character). Such CMs have been applied to combinatorial enumerations which led to CM
(characteristic-monomial) method as an alternative method to Pólya’s theorem [22]9.

3. Semi-graphical approaches

3.1. Subtraction of markaracters

For a graphical approach for obtaining the marks of C3v-group, we consider a
regular body (1 = h) depicted in figure 110.

9 Note that Fujita’s CM method is based on linear representations, while Pólya’s theorem is based on
permutation representations.

10 For the definition of regular bodies, see a previous paper of this series [39] and [31, chapter 7].
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aStrictly speaking, this column is concerned with markaracters, since each of the

symmetric operations is operated on the homomer set.

Figure 2. Homomer sets for characterizing C3v(/C3) and A2.

When the operations of C3 (⊂ C3v) are applied to the set of six vertices of 1, we
obtain two sets (“color-equalities”) of equivalent vertices: {1, 2, 3}, {4, 5, 6}11. Thereby,
we take a set (orbit) of homomers of C3-symmetry (h1 and h2) listed in figure 2. For
the sake of simplicity, we use the symbol H[C3v(/C3)] = {h1, h2} to designate the
homomer set for characterizing C3v(/C3). Although such a set asH[C3v(/C3)] is called
a homomer setin this paper, it should be noted that the resulting graphs (2 and 3) are
enantiomeric to each other according to the chiral local symmetry C3. Thus, a homomer
set contains enantiomers along with homomers, if it is concerned with a chiral graph.

Let us consider the action of C3 on H[C3v(/C3)] (figure 2). Obviously, the sym-
metry operations I , C3, and C2

3 fix both h1 and h2 so that the corresponding mark is
determined to be equal to 2. On the other hand, the operations σv, σ ′v, and σ ′′v cause the
interchange between h1 and h2. It follows that the corresponding mark is equal to 0. The
resulting values are collected in the mark column of figure 2. As a result, we have graph-
ically obtained the C3v(/C3)-row of the mark table (table 2). Because C3v(/C3)-row of
the mark table has been obtained by the graphical procedure, we can, in turn, calculate
the one-dimensional character A2 algebraically by virtue of equation (2). In general,
one-dimensional character (�±1) can be obtained by using equation (3).

This procedure for obtaining one-dimensional characters (�±1) is here called a
subtraction method, since marks of a group are graphically evaluated and the subtraction
due to equation (3) is used algebraically.

3.2. Semi-graphical method of generating characters

The subtraction due to equation (3) can be replaced by a semi-graphical operation,
even though the graphical meaning of equation (3) is not clarified. Let us consider a

11 According to the USCI approach [31], this division is ascribed to the subduction of the regular represen-
tation, i.e., C3v(/C1) ↓ C3 = 2C3(/C1).
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aStrictly speaking, this column is concerned with markaracters, since each of the symmetry

operations is operated on the homomer set.

Figure 3. Semi- and full-graphical approach to the mark row C3v(/Cs ) and the character E.

reduced set H′[A2] = {h1} in place of the homomer set H[C3v(/C3)] (figure 2). Al-
though the restriction ofH[C3v(/C3)] intoH′[A2] has no foundation in this stage of this
paper, we consider the action of C3v on the one-membered set of H′[A2]. Obviously,
the symmetry operations I , C3, and C2

3 fix h1 so that the corresponding character is de-
termined to be equal to 1. On the other hand, the operations σv, σ ′v, and σ ′′v convert h1

(∈ H′[A2]) into h2 (�∈ H′[A2]) so that the value−1 is assigned to these operations. Since
the graphical meaning of this assignment is not clarified, they are called semi-graphical
operations. These values are collected in the character column of figure 2. As a result,
we have graphically obtained the A2-row of the character table (table 3). This method is
called here a semi-graphical method.

The semi-graphical method can be applied to obtain two-dimensional characters.
Figure 3 illustrates the derivation from a regular body (1 as h) to give a homomer set:

H
[
C3v(/Cs)

] = {4, 5, 6} = {h1, h2, h3}, (7)

which is used to calculate marks of coset representation (CR) C3v(/Cs). The homomers
belong to Cs-symmetry up to conjugacy.

We here take account of a reduced set H′[E] = {h1, h2} in place of the original
homomer set H[C3v(/Cs)] = {h1, h2, h3}, although this restriction has no foundation
in this stage. Let us examine the action of C3v on H′[E]. Obviously, the identity op-
eration I fixes both h1 and h2 so that the corresponding character is determined to be
equal to 2, as collected in the character column of figure 3. If an operation converts h1

∈ H′[E] into h2 ∈ H′[E] or h2 ∈ H′[E] into h1 ∈ H′[E], its contribution to a character
is evaluated to be 0. If an operation fixes h1 ∈ H′[E] or h2 ∈ H′[E], its contribution to
a character is evaluated to be 1. If an operation converts h1 ∈ H′[E] into h3 �∈ H′[E] or
h2 ∈ H′[E] into h3 �∈ H′[E], its contribution to a character is evaluated to be −1. These
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values are summed up to give the corresponding character. The resulting characters are
collected in the character column of figure 3. Consequently, we have semi-graphically
obtained the E-row of the character table (table 3) by classifying the operations into the
conjugacy classes.

The semi-graphical method works well but has a conceptual drawback, since
there is no graphical foundation which restricts an original homomer set (such as
H[C3v(/Cs)] = {h1, h2, h3}) into a reduced set (such asH′[E] = {h1, h2}), even though
such a foundation can be derived algebraically from equation (3) as described later. The
next interest is to clarify the graphical meaning of equation (3). This will result in the
development of a purely graphical approach for obtaining one- and two-dimensional
characters, as discussed in the next section.

4. Full graphical approach

4.1. Concept of negative graphs

To develop such a purely graphical approach for obtaining characters, we now pro-
pose the concept of negative graphs, which are generated from the uncolored graph by
exchanging black and white ligands. For example, the graph 2(h1) shown in figure 2
is converted into the corresponding negative graph 3(h2) by exchanging black and white
ligands. This fact is symbolically expressed as h2 ≡ −h1. This means that h2 is
represented by h1 in terms of the concept of negative graphs. Thereby, the homomer
set H[C3v(/C3)] = {h1, h2} can be reduced into H′[A2] = {h1}, which contains the
homomer h1 only. In this paper, such a set as H′[A2] is now called a reduced homomer
set.

A more complicated example of negative graphs is illustrated in figure 4, where the
first row represents a homomer set corresponding to equation (7). The corresponding
negative homomer set is obtained easily, as shown in the bottom row of figure 4:

H
[
C3v(/Cs)

] = {4, 5, 6
} = {−h1,−h2,−h3}. (8)

When we superimpose 4(h1) and 5(h2), we obtain the negative graph 6(−h3)
12. This

is symbolically expressed by h1 + h2 ≡ −h3
13. In a similar way, the superposition of

4(−h1) and 5(−h2) gives 6(h3) so that we obtain −(h1 + h2) ≡ h3
14. This means that

h3 is represented by h1 and h2 in terms of the concept of negative graphs. Thereby,
the homomer set H[C3v(/Cs)] = {h1, h2, h3} (equation (7)) can be reduced into the
corresponding reduced homomer set, i.e., H′[E] = {h1, h2}.
12 The superposition gives presedence to black ligands. In other words, a black ligand and a white ligand

give a black ligand. Two white ligands superimposed give a white ligand. This procedure is called here
“positive coloring”.

13 It should be noted that 1 and 1 are equalized in this treatment. This means that the coloring process is
considered in terms of the modulus of full coloring.

14 The superposition gives presedence to white ligands. In other words, a white ligand and a black ligand
gives a white ligand. Two black ligands superimposed give a black ligand. This procedure is called here
“negative coloring”.
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Figure 4. Homomer sets and negative graphs for characterizing C3v(/Cs) and E.

In general, a homomer set H[G(/Gi)] = {h1, . . . , hd−1, hd} (d = |G|/|Gi|) gen-
erated from a regular body of G is governed by the coset representation G(/Gi). If no
other subgroups are present between G and Gi , the homomer set can be reduced into a
reduced homomer setH′[�] = {h1, . . . , hd−1}, where we place hd ≡ −(h1+· · ·+hd−1)

in terms of negative graphs.

4.2. Full graphical method for generating characters

Now that we have clarified the graphical meaning of a reduced homomer set in
terms of negative graphs, we are ready to develop full graphical method for obtaining
characters.

The first goal of this subsection is to obatin the one-dimensional character A2

by a full graphical approach. Thus we take account of the reduced homomer set
H′[A2] = {h1} and consider the action of C3v on H′[A2]. This treatment is allowed in
terms of the expression, h2 ≡ −h1. Obviously, the symmetry operations I , C3, and C2

3
fix h1 so that the corresponding character is determined to be equal to 1. On the other
hand, the operations σv, σ ′v, and σ ′′v convert h1 into h2, which is equal to −h1. Thereby,
the conversion from h1 to h2 can be regarded as the conversion from h1 into −h1. Since
h1 is fixed, the corresponding character is equal to −1. These values are collected in the
character column of figure 2. As a result, we have graphically obtained the A2-row of
the character table (table 3).

The second goal of this subsection is to obtain the two-dimensional character
E for the C3v-group by a full graphical approach (figure 3). Thus we take account
of the reduced homomer set H′[E] = {h1, h2} in place of the original homomer set
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H[C3v(/Cs)] = {h1, h2, h3}. Let us examine the action of C3v on H′[E], where we take
the relationship h3 ≡ −(h1 + h2) into consideration. Obviously, the identity operation I
fixes both h1 and h2 so that the corresponding character is determined to be equal to 2, as
collected in the character column of figure 3. The operation C3 converts h1 into h2 (no
homomers is fixed yielding a character of 0) and h2 into h3 (≡ −(h1+ h2), fixing −h2 to
contribute to a character by −1)15 so that we can graphically obtain 0+ (−1) = −1 as a
character. It should be emphasized that the contribution of h3 is hidden or shut up within
the reduced homomer setH′[E] = {h1, h2} by virtue of the relationship h3 ≡ −(h1+h2)

derived from the concept of negative graphs. The operation C2
3 converts h1 into h3

(≡ −(h1 + h2), fixing −h1) and h1 into h2 (fixing no homomers); thereby we obtain
(−1) + 0 = −1 as a character. The operation σv fixes the homomer h1 but converts
h2 into h3 (≡ −(h1 + h2), fixing −h2) so that we obtain 1 + (−1) = 0 as a character.
Similarly, the character for the operation σ ′v is graphically obtained to be equal to 0. The
operation σ ′′v that exchanges h1 and h2 to each other (fixing no homomers) is determined
to have the character 0. These values are collected in the character column of figure 3.
Consequently, we have graphically obtained the E-row of the character table (table 3)
by classifying the operations into the conjugacy classes.

Figure 3 also involves the mark column of C3v(/Cs) which is graphically obtained
by considering the action of C3v on the homomer set H[C3v(/Cs)]. The comparison of
the behavior of H[C3v(/Cs)] with that of the reduced homomer set H′[E] provides us
with the graphical meaning of characters, which is concealed in the following equation
collected in table 3:

E = C3v(/Cs)− C3v(/C3v) = (3, 1, 0) − (1, 1, 1) = (2, 0,−1), (9)

or in the following equation collected in table 2:

C3v(/Cs) = A1 + E = (1, 1, 1) + (2,−1, 0) = (3, 0, 1). (10)

5. Applications of the graphical approach

5.1. Graphical generation of characters ofD2h and its subgroups

By thinking out appropriate regular bodies, the generation of characters for D2h

and its subgroups can be graphically discussed on a common basis.

5.1.1. One-dimensional characters ofD2h

The mark table ofD2h that was obtained algebraically has been reported as a USCI
(unit-subduced-cycle-index) table by one of the authors [38]. To clarify the usefulness
of the present approach, the character of the D2h-group will be obtained graphically in
this subsection.

To work with an actual example for organic chemistry, we select an ethylene deriv-
ative (7) shown in figure 5 as a regular body of the D2h-group, where two cyclopropane

15 This assignment results in the same contribution as defined in the semi-graphical method.
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Figure 5. A regular body for D2h-group. The three two-fold axes are chosen as the Cartesian coordinates,
i.e., C2(x), C2(y), C2(z). The three reflection planes are the xy-plane (σ(xy)), the xz-plane (σ(xz)), and the

yz-plane (σ(yz)).

rings are linked with a double bond. It is convenient that the three two-fold axes are used
as the Cartesian coordinate axes. Thus, the z-axis is chosen as the two-fold axis (C2(z))
which passes through the two carbon atoms of the central double bond. The y-axis
(C2(y)) is selected so that the two cyclopropane rings lie in the yz-plane. The x-axis
(C2(x)) runs through the center of the double bond and is perpendicular to the page plane
(yz-plane). The three reflection planes are the xy-plane (σ(xy)), the xz-plane (σ(xz)), and
the yz-plane (σ(yz)). The remaining element of the D2h-group is the inversion center (i).
In summary, we obtain eight symmetry operations of D2h as follows:

D2h = {I, C2(x), C2(y), C2(z), i, σ(xy), σ(xz), σ(yz)}. (11)

There are 16 subgroups, which are enumerated as follows:

C1 = {I };
C2 = {I, C2(x)}, C ′2 = {I, C2(y)}, C ′′2 = {I, C2(z)};
Cs = {I, σ(xy)}, C ′s = {I, σ(xz)}, C ′′s = {I, σ(yz)};
Ci = {I, i};
C2v ={I, C2(x), σ(xy), σ(xz)}, C ′2v = {I, C2(z), σ(xz), σ(yz)}, C ′′2v ={I, C2(y), σ(xy), σ(yz)};
C2h = {I, C2(x), i, σ(yz)}, C ′2h = {I, C2(y), i, σ(xz)}, C ′′2h = {I, C2(z), i, σ(xy)};
D2 = {I, C2(x), C2(y), C2(x)} D2h = {I, C2(x), C2(y), C2(z), i, σ(xy), σ(xz), σ(yz)}.
One-dimensional characterAu. Among these subgroups, those of order 4 are con-
cerned with one-dimensional characters of D2h. For example, we first consider the ho-
momer set H[D2h(/D2)] = {8, 9} = {h1, h2} and the corresponding reduced homomer
set H′[Au], as illustrated in figure 6. Note that 9(h2) is the negative graph of and 8(h1),
i.e., h2 ≡ −h1. The graphs of the set H[D2h(/D2)] are enantiomeric to each other,
though the set is called a “homomer” set. The sets H[D2h(/D2)] and H′[Au] respec-
tively give marks of D2h(/D2) and a one-dimensional character Au.

Let us consider the action of D2h on H′[Au]. Obviously, the symmetry opera-
tions I , C2(x), C2(y) and C2(z) fix h1 so that the corresponding character is determined to
be equal to 1. On the other hand, the operations i, σ(xy), σ(xz), and σ(yz) convert h1 into h2,
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aStrictly speaking, this column is concerned with markaracters, since each of the

symmetry operations is operated on the homomer set.

Figure 6. Homomer sets for characterizing D2h(/D2) and Au.

which is not a member of H′[Au]. However, because the latter is replaced by −h1 and
the h1 is fixed, the contribution of h2 (≡ −h1) is evaluated to be −1. This is recognized
as a character. These values are collected in the character column of figure 6. This
relationship is represented by the following symbolic expression:

Au = D2h(/D2)−D2h(/D2h). (12)

Ungerade one-dimensional charactersB3u, B2u, and B1u. Three ungerade one-
dimensional characters of theD2h-group (B3u, B2u, and B1u) can be discussed by consid-
ering CRs D2h(/Gi ), where the subgroups Gi are of C2v-type. The graphical approach
for these cases are shown in figure 7, where one homomer (10, 11, or 12) is selected as
h1 and the other homomer h2 is omitted from each of the homomer sets. In other words,
figure 7 contains the respective reduced homomer sets, whose homomer is h1. Note that
each h2 is the negative graph of the corresponding h1, i.e., h2 ≡ −h1. The action of
D2h on each of the reduced homomer sets fixes h1 or generates h2, where the latter h2 is
replaced by −h1. By this procedure, the three ungerade one-dimensional characters B3u,
B2u, and B1u are generated graphically, as summarized in figure 7. The relationships
betweenH[D2h(/C2v)] andH′[B3u], betweenH[D2h(/C

′
2v)] andH′[B2u], and between

H[D2h(/C
′′
2v)] and H′[B1u] are represented by the following symbolic expressions:

B3u=D2h(/C2v)−D2h(/D2h), (13)
B2u=D2h

(
/C ′2v

)−D2h(/D2h), (14)
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Figure 7. Reduced homomer sets for characterizing one-dimensional characters, B3u, B2u, and B1u.

B1u=D2h
(
/C ′′2v

)−D2h(/D2h). (15)

A common feature of the ungerade characters (B3u, B2u, and B1u) collected in
figure 7 is the fact that each character for the inversion i is equal to −1. Graphically
speaking, the homomers 10, 11 and 12 are not fixed on the action of i. Hence, the
common feature is ascribed to the nature of the graphs whose symmetries satisfy i �∈
C2v,C

′
2v,C

′′
2v.

Gerade one-dimensional charactersB3g, B2g, andB1g. Similarly, the graphical ap-
proach for the three subgroups of C2h-type clarifies common features between the three
gerade one-dimensional characters of the D2h-group (B3g , B2g, and B1g), as shown
in figure 8. Again, figure 8 depicts one homomer (13, 14, or 15) selected as h1.
The other homomer h2 is omitted to depict the corresponding reduced homomer set,
where each omitted h2 is the negative graph of the corresponding h1, i.e., h2 ≡ −h1. The
action of D2h on each of the reduced homomer sets fixes h1 or generates h2, where
the latter h2 is replaced by −h1. Thereby, the three gerade one-dimensional characters
B3g, B2g, and B1g are generated graphically, as summarized in figure 8. The relationships
betweenH[D2h(/C2h)] andH′[B3g], betweenH[D2h(/C

′
2h)] andH′[B2g], and between

H[D2h(/C
′′
2h)] and H′[B1g] are represented by the following symbolic expressions:

B3g =D2h(/C2h)−D2h(/D2h), (16)

B2g =D2h
(
/C ′2h

)−D2h(/D2h), (17)

B1g =D2h
(
/C ′′2h

)−D2h(/D2h). (18)
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Figure 8. Reduced homomer sets for characterizing one-dimensional characters of D2h-group, B3g , B2g ,
and B1g .

A common feature of the gerade characters (B3g, B2g, and B1g) collected in figure 8
is the fact that each character for the inversion i is equal to 1. Graphically speaking, the
homomers 13, 14 and 15 are fixed on the action of i. Hence, the common feature is
ascribed to the nature of the graphs whose symmetries satisfy i ∈ C2h,C

′
2h,C

′′
2h.

5.1.2. One-dimensional characters ofC2h

The graphical generation of homomers discussed in this paper can be regarded as
a method of generating a regular body of its subgroup from another point of view. For
example, the two cyclopropane rings of the regular body of D2h (7 shown in figure 5)
are replaced by two oxirane rings so that the original C2(y)- and C2(z)-axes of 7 are
canceled. This process generates a regular body of C2h (16) shown in figure 9. Note that
the C2h-group listed in the subgroups of D2h is selected as a mother group C2h for this
discussion.

C2h = {I, C2, i, σh} ∼ C2h = {I, C2(x), i, σ(yz)}. (19)

Obviously, this regular body is related to the homomer 13 from the symmetrical point of
view, where the former is generated by the replacement of each substituted methylene
(C(")2) with an oxygen atom.

Figure 9 also shows the graphical approach for obtaining one-dimensional charac-
ters of C2h-group, where the respective reduced homomer sets (17–19), which contains
h1 only, are depicted. The action of C2h on each of the reduced homomer sets fixes h1 or
generates h2, where the latter h2 is replaced by −h1. Thereby, the characters of the C2h-
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Figure 9. Reduced homomer sets for characterizing one-dimensional characters of C2h-group, Au, Bg ,
and Bu.

group are obtained and listed in the respective columns of figure 9. The relationships
between H[C2h(/C2)] and H′[Au], between H[C2h(/Ci )] and H′[Bg], and between
H[C2h(/Cs)] and H′[Bu] are represented by the following symbolic expressions:

Au=C2h(/C2)− C2h(/C2h), (20)

Bg =C2h(/Ci)− C2h(/C2h), (21)

Bu=C2h(/Cs)− C2h(/C2h). (22)

5.1.3. One-dimensional characters ofC2v

When the two cyclopropane rings of 7 (figure 5) are replaced by two oxirane rings
in an alternative way, we can generate a regular body of C2v (20) shown in figure 10.
During this process, the original C2(x)- and C2(z)-axes of 7 are canceled. Note that the
C ′′2v-group listed in the subgroups of D2h is selected as a mother group C2v for this
discussion.

C2v =
{
I, C2, σv, σ

′
v

} ∼ C ′′2v = {I, C2(y), σ(xy), σ(yz)}. (23)

Obviously, this regular body is related to the homomer 12, where each substituted
methylene (C(")2) in the latter homomer is replaced by an oxygen atom to generate
the regular body (20).

One-dimensional characters of C2v-group can be obtained by the graphical ap-
proach, as shown in figure 10, where the respective reduced homomer sets (21–23) are
depicted. When the action of C2v on each of the reduced homomer sets fixes h1, its
contribution to the corresponding character is equal to 1. On the other hand, the action
converts h1 into h2, where the latter h2 is replaced by−h1 and its contribution is evaluated
to be −1. Thereby, the characters of the C2v-group are obtained and listed in the respec-
tive columns of figure 10. The relationships betweenH[C2v(/C2)] andH′[A2], between
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Figure 10. Reduced homomer sets for characterizing one-dimensional characters of C2v-group, A1, B1,
and B2.

H[C2v(/Cs)] andH′[B1], and between H[C2v(/C
′
s)] and H′[B2] are represented by the

following symbolic expressions:

A2=C2v(/C2)− C2v(/C2v), (24)

B1=C2v(/Cs)− C2v(/C2v), (25)

B2=C2v
(
/C ′s

)− C2v(/C2v). (26)

5.2. Graphical generation of characters ofD3h and its subgroups

This subsection deals with two-dimensional characters (or Q-conjugacy charac-
ters), which are generated by the graphical approach to the D3h- and C3h-groups. By
thinking out appropriate regular bodies, their group–subgroup relationship is demon-
strated graphically.

5.2.1. Two-dimensional character ofD3h

Let us consider 24 (figure 11) as a regular body for D3h, where twelve open circles
(white) represent substitution sites16. We obtain twelve symmetry operations of D3h as
follows:

D3h =
{
I, C3, C

2
3 , C2, C

′
2, C

′′
2 , σh, S3, S

2
3 , σv, σ

′
v, σ

′′
v

}
. (27)

To describe the CR D3h(/C2v), we consider the homomer set shown in figure 12,
where the four sites on either one of the cyclobutane rings are replaced by solid circles
(black) to give 26(h1), 27(h2), or 28(h3). These homomers respectively belong to C2v =
{I, C2, σh, σv}, C ′′2v = {I, C ′′2 , σh, σ ′′v }, and C ′2v = {I, C ′2, σh, σ ′v}, which are conjugate
to each other within the D3h-group.

16 For the mark table and related data of D3h, see [31, appendices A–E].
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Figure 11. Regular bodies forD3h and C3h. Three two-fold axes and three mirror planes are depicted. The
symbol represents a three-fold rotoreflection axis.

Figure 12. Homomer set H[D3h(/C2v)] for D3h(/C2v) and the reduced homomer set H′[E′] for the
character E′. The marks ofH[D3h(/C2v)] are omitted.

By a similar procedure for obtaining the two-dimensional character of the C3v-
group (figure 3), we can write h3 ≡ −(h1 + h2) for the homomer set H[C3v(/Cs)] =
{h1, h2, h3}. Hence, we are able to use the corresponding reduced homomer setH′[E′] =
{h1, h2}, as shown in figure 12. Then we consider the action of the operations onH′[E′].
Obviously, the identity operation I and the reflection σh fix both h1 and h2 so that the
corresponding character is determined to be equal to 2, as collected in the character
column of figure 12. The operation C3 converts h1 into h2 (fixing no homomers to
contribute to a character by 0) and h2 into h3 (≡ −(h1 + h2), fixing −h2 to contribute to
a character by −1) so that we can graphically obtain 0+ (−1) = −1 as a character. The
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Table 4
(Q-conjugacy) character table of C3h

a.

I σh 2C3 2S3 Markaracterb

C1 Cs C3 C3h

A′ 1 1 1 1 C3h(/C3h)

A′′ 1 −1 1 −1 C3h(/C3)− C3h(/C3h)

E′ 2 2 −1 −1 C3h(/Cs )− C3h(/C3h)

E′′ 2 −2 −1 1 C3h(/C1)− C3h(/Cs )− C3h(/C3)+C3h(/C3h)

a Strictly speaking, this table is a Q-conjugacy character table. Thus, the symmetry opera-
tions are classified in terms of Q-conjugacy. See [37]. In terms of the usual conjugacy, each
operation belongs to a one-membered conjugacy class because the C3h-group is a cyclic
group.

b This is equivalent to equations (34)–(37) described in [26], where the original C6-group
is replaced by C3h because of isomorphism.

same character can be obtained by the action of C2
3 because of conjugacy. Although the

exact behaviors are different, S3 and S2
3 give characters of the same value. It should be

emphasized that the contribution of h3 is implicitly taken into consideration by virtue of
the relationship h3 ≡ −(h1 + h2). The operation C2 fixes the homomer h1 but converts
h2 into h3 (≡ −(h1+h2), fixing−h2) so that we obtain 1+ (−1) = 0 as a character. The
action of the other two-fold rotations gives characters of the same value. Although the
exact behaviors are different, the three dihedral mirrors give characters of the value 0.
The results are summarized in the character column of figure 12. The relationships
betweenH[D3h(/C2v)] andH′[E′] is represented by the following symbolic expression:

E′ = D3h(/C2v)−D2h(/D2h). (28)

5.2.2. Two-dimensional character ofC3h

Since the point group C3h is cyclic, it has characters of imaginary units. Hence,
we should use Q-conjugacy characters to conceal such imaginary units [37]. Fujita has
shown the Q-conjugacy character table of C3h [26], which is cited as table 4. The goal
of this section is to obtain a two-dimensional character E′ by means of the graphical
approach.

A regular body of C3h (25) can be obtained by replacing the three cyclobutane
rings of 24 with three oxetane rings, as shown in figure 11. This process corresponds to
the selection of six symmetry operations from D3h as follows:

C3h =
{
I, C3, C

2
3 , σh, S3, S

2
3

}
, (29)

where the original three two-fold rotations and three vertical reflections are deleted from
the right-hand side of equation (27). Then, we consider the homomer set shown in
figure 13 to describe the CR C3h(/Cs). Note that the two sites on either one of the
oxetane rings are replaced by solid circles (black) to give 29(h1), 30(h2), or 31(h3).
These homomers belong to Cs = {I, σh}. Since we have selected such a regular body
(25) as related closely to 24, their graphical behaviors can be easily compared.
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aStrictly speaking, this column is concerned with Q-conjugacy characters, since the E′ of C3h is further

reduced into one-dimensional characters containing imaginary units.

Figure 13. Homomer set for C3h(/Cs ) and the reduced homomer set for the character E′. The marks
ofH[C3h(/Cs )] are omitted.

When a similar procedure for obtaining the two-dimensional character of the C3v-
group (figure 3) is applied to this case, we can also write h3 ≡ −(h1 + h2) for the
homomer setH[C3h(/Cs)] = {h1, h2, h3}. Thereby, we are able to use the corresponding
reduced homomer set H′[E′] = {h1, h2}, as shown in figure 13. Then we consider the
action of the operations onH′[E′]. The identity operation I and the reflection σh fix both
h1 and h2 so that the corresponding character is determined to be equal to 2, as collected
in the character column of figure 13. The operation C3 converts h1 into h2 (fixing no
homomers to contribute to a character by 0) and h2 into h3 (≡ −(h1 + h2), fixing −h2

to contribute to a character by −1) so that we can graphically obtain 0 + (−1) = −1
as a character. The same character can be obtained by the action of C2

3 because of
Q-conjugacy (not because of conjugacy in this case). The Q-conjugate operations S3 and
S2

3 give characters of the same value, although the exact behaviors are different. It should
be again emphasized that the contribution of h3 is implicitly taken into consideration by
virtue of the relationship h3 ≡ −(h1 + h2).

It is to be noted that the present graphical approach is not effective to more com-
plicated cases such as the character E′′ of C3h (table 4). These cases will be the subject
of future studies.

6. Remarks

Marks/markaracters vs. characters/Q-conjugacy characters. In the graphical method
of generating marks in a previous paper of this series [39], we have taken account of the
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action of G on a homomer set:

H
[
G(/Gi)

] = {h1, . . . , hd−1, hd
}
, (30)

where we place d = |G|/|Gi|. The action of G is regarded as a set of actions itemized
with respect to conjugate subgroups so that marks as invariants are itemized with such
conjugate subgroups. On the other hand, the action ofG described in the present paper is
conceptually changed to be concerned with respective symmetry operations ofG, where
markaracters as invariants are summarized in terms of cyclic subgroups or equivalently
in terms of Q-conjugacy. As for mark tables, this change of conceptual viewpoints
results in the selection of columns for cyclic subgroups and the deletion of columns for
non-cyclic subgroups so as to give the corresponding markaracter tables [24]. If no other
subgroups are present between G and Gi , the resulting markaracter can be converted to
a Q-conjugacy character (�) according to the following equation:

� = G(/Gi)−G(/G), (31)

where we have

G(/G) = (1, 1, . . . , 1︸ ︷︷ ︸
d=|G|/|Gi |

). (32)

It follows that markaracters and Q-conjugacy characters can be equalized to each other,
though their origins are distinct. Note that such Q-conjugacy irreducible characters are
orthogonal to each other but are not always normal. Compare this with the fact that
irreducible characters are orthnormal in general.

The graphical approach described in this paper is based on equation (31). Hence,
the resulting � is a Q-conjugacy characters but not a usual character, although they are
identical with each other in matured cases [28].

Proof of the semi-graphical method.Let us consider the corresponding reduced homo-
mer set:

H′[�] = {h1, . . . , hd−1}, (33)

where we place hd ≡ −(h1 + · · · + hd−1). When the action of a symmetry operation of
G on hi (∈ H′[�]) produces hj (∈ H′[�]), the contribution to � can be evaluated to be
χi = 0 if hi �= hj and to be χi = 1 if hi = hj .

1. If the action on any hi (∈ H′[�]) does not produce hd ( �∈ H′[�]), the corre-
sponding � is represented by

∑d−1
i=1 χi , since the contribution of hd ( �∈ H′[�])

is always ommitted to result in the spontaneous subtraction by 1.

2. If the action on hk (∈ H′[�]) produces hd ( �∈ H′[�]), the contribution of hk →
hd should be evaluated to be χk = −1 in order to satisfy equation (31). Note that
hd ( �∈ H′[�]) have no contribution, because it is converted into either homomer
of H′[�]. Since the action on a homomer hi (∈ H′[�]) of other than hk can be
evaluated as above, the corresponding � is represented by

∑d−1
i=1(i �=k) χi + χk ,

where we have χi = 0 or 1 and χk = −1.
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Since this procedure requires equation (31) in the step of evaluating χk = −1, it serves
as a proof of the semi-graphical method described above.

Proof of the graphical method.In the above proof, we have not used the condition
hd ≡ −(h1 + · · · + hd−1), which is based on the concept of negative graphs. This
condition provides us with a reason why we have placed χk = −1 if the action on hk
(∈ H′[�]) has produced hd ( �∈ H′[�]).

When the action of a symmetry operation ofG on hi (∈ H′[�]), the same symmetry
operation acts on (h1+ · · · + hd−1) (≡ −hd ). Suppose that an operation g (∈ G) acts on
hd ( �∈ H′[�]), i.e., g : hd → hk. Then, we have hd ∈ H′[�] and hk �∈ H′[�]. It follows
that we have the action of g on (h1 + · · · + hd−1) as follows:

g : (h1 + · · · + hd−1) → (h1 + · · · + hd−1)+ hd − hk = −hk. (34)

Hence, −(h1 + · · · + hd−1) behaves in the same manner as hd on the action of G. This
means that we can use the reduced homomer set H′[�] = {h1, . . . , hd−1} in place of the
original homomer setH[G(/Gi )] = {h1, . . . , hd−1, hd}. For example, the data collected
in figure 3 exemplify equation (34) as follows:

6 4+ 5
h3 h1 + h2 (= −h3)

I h3 h1 + h2 (= −h3)

C3 h1 h2 + h3 (= −h1)

C2
3 h2 h3 + h1 (= −h2)

σv h2 h1 + h3 (= −h2)

σ ′v h1 h3 + h2 (= −h1)

σ ′′v h3 h2 + h1 (= −h3)

(35)

If the action on hk (∈ H′[�]) produces hd ( �∈ H′[�]), the contribution of hk →
hd = −(h1+· · ·+hk+· · ·+hd−1) is evaluated to be χk = −1, because hk is fixed. This
is identical with the criterion for the semi-graphical method and hence the remaining
part of the proof is also valid for the graphical method.

7. Conclusion

By starting from a regular body of a group G, we have generated graphs that
belong to its subgroup Gi and are homomeric (or enantiomeric) to each other. The
resulting homomer set denoted by H[G(/Gi )] = {h1, . . . , hd−1, hd} has been deter-
mined to be governed by the coset representation G(/Gi), where d = |G|/|Gi |. To
develop a graphical method of generating characters of the G-group, the concept of
negative graphhas been proposed. Thereby, the homomer set H[G(/Gi )] has been re-
duced into the reduced homomer set H′[�] = {h1, . . . , hd−1}, where we have placed
hd ≡ −(h1+· · ·+ hd−1). The graphical generation of one- and (some) two-dimensional
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characters (�) of the G-group has been studied on the basis of the reduced homomer set
H′[�] in the cases of d = |G|/|Gi | = 2 and 3. It has been compared with an algebraic
generation using marks (or markaracters), i.e., � = G(/Gi) − G(/G). The versatility
of the graphical generation has been demonstrated by using C3v, D2h, C2h, C2v, D3h,
and C3h as examples.
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